X
تبلیغات
نماشا
رایتل

فناوری اطلاعات و نرم افزار

فناوری اطلاعات , نرم افزار - هوش تجاری - داده کاوی - سیستم های اطلاعاتی مدیریت - مشاوره و اجرای پروژه

Weka: معرفی نرم افزار و قابلیت های آن

وکا (Weka) یک نرم افزار داده کاوی متن‌باز می‌باشد که بسیاری از الگوریتم‌های یادگیری ماشین را پشتیبانی می‌کند. تمام قسمت‌های این نرم‌افزار به زبان جاوا نوشته شده است و در نتیجه می‌تواند بر روی هر پلتفرمی اجرا گردد. در ادامه توضیحاتی در خصوص قسمت های مختلف این نرم افزار ذکر شده است و همچنین قابلیت های اصلی آن به صورت جزئی بررسی شده است که با مراجعه به آن ها می توانید بررسی کنید که آیا این نرم افزار به منظور اجرای پروزه شما مناسب می باشد یا خیر . همچنین لینک دانلود نرم افزار و کتاب آموززشی آن نیز در انتهای متن موجود است.

 این پکیج شامل چهار واسط کاربری متفاوت می‌باشد:

  •  Explorer: در این حالت شما می‌توانید روش‌های مختلف آماده‌سازی، تبدیل و الگوریتم‌های مدلسازی بر روی داده‌ها را اجرا کنید.
  • Experimenter: در این حالت فقط امکان اجرای الگوریتم‌های مختلف رده‌بندی به صورت هم‌زمان و مقایسه نتایج آن‌ها وجود دارد. تمامی شاخص‌های مورد نیاز به منظور بررسی مدل‌های رده بندی در این قسمت تعریف شده و قرار دارند و گزارشات مفصلی را از جمله آزمون T می توان در این قسمت پس از مدلسازی استخراج نمود.
  • Knowledge Flow: در این قسمت یک واسط گرافیکی طراحی شده است که مانند نرم افزارهای IBM Modeler و رپیدماینر در آن می توان جریان های داده ای مختلف تولید نمود.
  •  (command line interface (CLI: در این حالت امکان مدلسازی توسط کدنویسی خط به خط قرار دارد.
  • در وکا داده ها می توانند به فرمت های مختلف از جمله Excel، CSV و Arff باشند. اما به طور کلی این نرم افزار با داده‌ها به فرمت Arff میانه بهتری دارد.

حال شاید بخواهید با قابلیت های نرم افزار بیشتر آشنا شوید. در ادامه عملگرهای مختلف موجود در این نرم افزار تشریح شده اند.

مشاهده رزومه و معرفی 

  برخی از توابع وکا به منظور آماده سازی داده‌ها به شرح زیر می باشد:

  • تبدیل متغیرهای گسسته چند مقداری به دو مقداری و تبدیل متغیرهای پیوسته به گسسته
  • روش‌های نمونه گیری با جایگذاری و بدون جایگذاری و روش‌های پیشرفته تر مانند SMOTE
  • گسسته سازی بدون نظارت و با نظارت
  • نرمالسازی و استانداردسازی
  • روش LOF (Local Outlier Factor) برای پیدا کردن نقاط دورافتاده
  • روش‌های مختلف برای ادغام مقادیر مختلف متغیرهای گسسته
  • جایگذاری مقادیر از دست رفته
  • کاهش بعد داده ‌ها با استفاده از تحلیل اجزای اصلی (PCA) و موجک (Wavelet)

به منظور مشاهده فهرست تمامی توابع  آماده‌سازی داده‌ها در وکا به اینجا مراجعه نمایید.

 

روش‌های خوشه‌بندی در این نرم افزار نیز به شرح زیر هستند:

  • روش‌های بر پایه مرکز هندسی: kmeans
  • روش‌های بر پایه چگالی: DBSCAN و OPTICS
  • روش‌های سلسله مراتبی
  • روش‌های برپایه توزیع احتمالی مانند EM


روش‌های کشف قواعد انجمنی نیز به شرح زیر هستند:

  • روش Apriori
  • کشف قواعد انجمنی متوالی
  • روش‌های درختی مانند FP growth

برخی از روش‌های رده‌بندی معمول و جمعی موجود در این نرم افزار نیز به شرح زیر هستند:

  • توابع: ماشین بردار پشتیبان (SVM) که توابع کرنل‌های مختلف را پشتیبانی می‌کند، شبکه‌های عصبی و رگرسیون لجستیک
  • درخت‌های تصمیم: الگوریتم‌هایی مانند ID3 و C4.5
  • روش‌های برپایه حافظه : kNN
  • روش‌های بر پایه بیز: بیز ساده و شبکه بیزی
  • روش‌های برپایه قاعده: جداول تصمیم و OneR (توانایی ساخت قوانین بر روی تنها یک متغیر)
  • روش‌های یادگیری Bagging: Stacking، Adaboost، MultiClassClassifier  و تابع CVParameterSelection (به منظور تنظیم پارامترهای موجود در هر الگوریتم با استفاده از ده مرتبه اعتبارسنجی و استفاده از بهترین ترکیب برای ساخت بهترین مدل).

 روش های انتخاب متغیرها (ویژگی) در این نرم‌افزار به دو دسته فیلتری و پوشاننده تقسیم بندی شده اند. از میان روش‌های فیلتری موجود می‌توان به روش‌های chi-squared، سود اطلاعاتی، شاخص جینی و روش relief اشاره نموده. همچنین در روش‌های پوشاننده نیز امکان استفاده از روش‌های رده‌بندی وجود دارد. همچنین به منظور جسجوی مجموعه متغیرهای بهینه در روش‌های پوشاننده نیز روش‌های جستجوی متفاوتی ارائه شده است که از جمله آن‌ها می‌توان به  best-first(اولین بهترین ها)، forward selection (انتخاب روبه جلو)، الگوریتم ژنتیک و الگوریتم ازدحام ذرات اشاره نمود.



در نرم افزار وکا همچنین قابلیت کار با مجموعه داده‌های بزرگ و به اصطلاح Big Data وجود دارد. در هنگام مواجه با این مسائل بهترین پیشنهاد استفاده از پکیج command-line می‌باشد. همچنین امکان نوشتن کد مستقیما در جاوا یا زبان‌های بر پایه جاوا مانند Groovy یا Jython نیز وجود دارد.

به طور کلی محاسن این نرم افزار عبارتند از:

  •  در بردارنده محدوده وسیعی آماده سازی داده‌ها و روش‌های انتخاب ویژگی‌ها به صورت یکپارچه.
  • محدوده وسیعی از روش های رده بندی
  • وجود تعداد زیادی شاخص به منظور ارزیابی روش های رده بندی
  • محیط های مختلف کاری به منظور سهولت در اجرای مدلسازی های مختلف

 

برخی از معایب آن نیز عبارند از:

  •  زمان‌بر بودن اجرای مدل‌ها به علت عدم بهینه بودن برخی از آنها (در برخی موارد زمان اجرای یک الگوریتم در این نرم افزار در مقایسه با نرم افزاری مانند IBM modeler حتی به 5 برابر نیز می رسد)
  • محدودیت در منابع آموزشی
  • محدودیت در روش های خوشه بندی و قواعد انجمنی
  • محدودیت شدید در مصورسازی داده ها

 

برای یادگیری این نرم‌افزار منابع زیادی وجود دارد. یکی از این منابع که قسمت command line و بسیاری از عملگرهای این نرم افزار را به منظور پیش پردازش داده ها و مدلسازی یطور جامع تشریح کرده است توسط  Witten و Frank نوشته شده است. لینک دانلود این کتاب در انتهای متن موجود است. از فصل نهم به بعد این کتاب در خصوص نرم افزار توضیحاتی ارائه شده است.

نرم افزار وکا یک نرم افزار متن باز است و می توانید آنرا از این لینک دانلود نمایید.

 برگرفته ار سایت irandatamining

تحلیل نهایی:

به قول یکی از دوستان "عزیزان در تحلیل نهایی" می توان گفت که نرم افزار وکا به منظور اجرای مدل های رده بندی علی رقم سرعت پایین آن، یکی از حرفه ای ترنی نرم افزارهای موجود است. تعداد بیشماری از مقالات منتشر شده تاکنون از این نرم افزار به منظور مدلسازی های خود استفاده نموده اند. همچنین این نرم افزار با داشتن دامنه وسیعی از روش های انتخاب ویژگی بسیار مناسب برای تحقیقاتی است که می خواهند از این روش ها استفاده کنند. یک ضعف اصلی این نرم افزار عدم وجود تحلیل کافی در خصوص روش های خوشه بندی است و همچنین عدم وجود شاخص های ارزیابی برای این روش ها است. در نهایت وکا با وجود محیط های مختلف در کوتاهترین زمان قابل یادگیری است و این یکی از مزیت های اصلی آن نیز می باشد.

تاریخ ارسال: دوشنبه 7 اردیبهشت 1394 ساعت 00:08 | نویسنده: عباس علامه | چاپ مطلب
نظرات (0)
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
نام :
پست الکترونیک :
وب/وبلاگ :
ایمیل شما بعد از ثبت نمایش داده نخواهد شد